MPX10 Series 10 kPa Uncompensated Pressure Sensors

Rev. 15 — 22 April 2021

Product data sheet

1 General Description

The MPX10 series device is a silicon piezoresistive pressure sensor providing a very accurate and linear voltage output directly proportional to the applied pressure. This standard, low cost, uncompensated sensor permits manufacturers to design and add their own external temperature compensation and signal conditioning networks. Compensation techniques are simplified because of the predictability of NXP's single element strain gauge design.

2 Features and Benefits

- Low Cost
- Patented Silicon Shear Stress Strain Gauge Design
- Ratiometric to Supply Voltage
- Differential and Gauge Options
- Durable Epoxy Unibody Element or Thermoplastic (PPS) Surface Mount Package

3 Applications

- Air Movement Control
- Environmental Control Systems
- Level Indicators
- Leak Detection
- Medical Diagnostics
- Industrial Controls
- Pneumatic Control Systems
- Robotics

10 kPa Uncompensated Pressure Sensors

4 Ordering Information

Table 1. Ordering information

Device Name	Package	Case	Number of ports			Pressure type			Device marking
	options	number	None	Single	Dual	Gauge	Differential	Absolute	
Small outline package (MPX10 Series)									
MPXV10GC6U	Rail	<u>482A</u>		•		•			MPXV10G
Unibody package	(MPX10 Serie	s)					1	1	
MPX10D	Tray	<u>344</u>	•				•		MPX10D
MPX10DP	Tray	<u>344C</u>			•		•		MPX10DP
MPX10GP	Tray	<u>344B</u>		•		•			MPX10GP

Small outline package

MPXV10GC6U Case 482A-01

Unibody packages

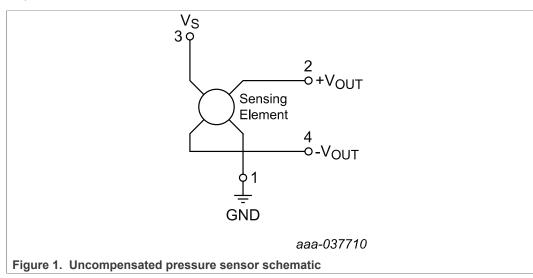
MPX10D Case 344-15

MPX10DP Case 344C-01

MPX10GP Case 344B-01

MPX10 Product data sheet All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.


Rev. 15 — 22 April 2021

2 / 20

10 kPa Uncompensated Pressure Sensors

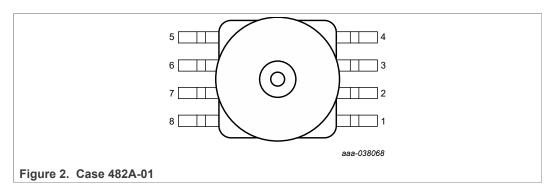

Block Diagram 5

Figure 1 shows a schematic of the internal circuitry on the stand-alone pressure sensor chip.

Pin Information 6

6.1 MPXV10GC6U

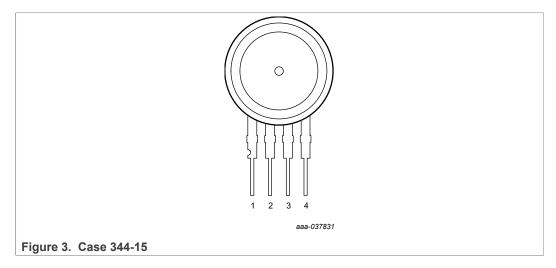
Table 2. Pin definitions - MPXV10GC6U

Symbol	Pin	Description
GND	1	Ground
+V _{OUT}	2	+Voltage output
Vs	3	Power supply
–V _{OUT}	4	-Voltage output
n.c.	5	Not connected
n.c.	6	Not connected
n.c.	7	Not connected
n.c.	8	Not connected

MPX10

All information provided in this document is subject to legal disclaimers

© NXP B.V. 2021. All rights reserved


Product data sheet

Rev. 15 - 22 April 2021

3 / 20

10 kPa Uncompensated Pressure Sensors

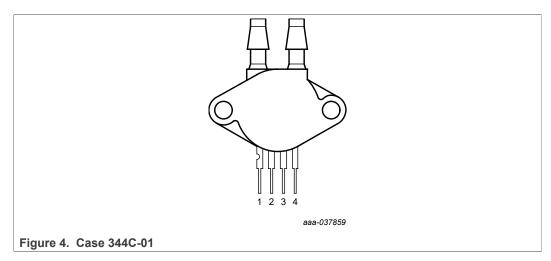

6.2 MPX10D

Table 3. Pin definitions - MPX10D

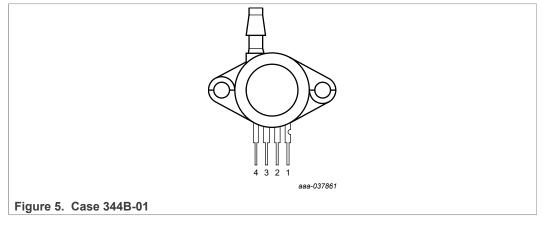
Symbol	Pin	Description		
GND	1	Ground		
+V _{OUT}	2	+ Voltage output		
Vs	3	Power supply		
-V _{OUT}	4	– Voltage output		

6.3 MPX10DP

Table 4. Pin definitions - MPX10DP

Symbol	Pin	Description
GND	1	Ground
+V _{OUT}	2	+ Voltage output
V _S	3	Power supply
–V _{OUT}	4	- Voltage output

MPX10 Product data sheet


All information provided in this document is subject to legal disclaimers.

Rev. 15 — 22 April 2021

© NXP B.V. 2021. All rights reserved.

10 kPa Uncompensated Pressure Sensors

6.4 MPX10GP

Table 5. Pin de	initions - MPX10GP
-----------------	--------------------

Symbol	Pin	Description
GND	1	Ground
+V _{OUT}	2	+ Voltage output
Vs	3	Power supply
-V _{OUT}	4	- Voltage output

MPX10

© NXP B.V. 2021. All rights reserved.

Product data sheet

Rev. 15 — 22 April 2021

5 / 20

10 kPa Uncompensated Pressure Sensors

7 Maximum Ratings

Table 6. Maximum ratings

Exposure beyond the specified limits may cause permanent damage or degradation to the device. In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
P _{max}	Overpressure	P1 > P2	—	_	75	kPa
P _{burst}	Burst Pressure	P1 > P2	—	_	100	kPa
T _{stg}	Storage Temperature		-40	_	+125	°C
T _A	Operating Temperature		-40		+125	°C

MPX	10	

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Product data sheet

Rev. 15 — 22 April 2021

6 / 20

10 kPa Uncompensated Pressure Sensors

8 Operating Characteristics

Table 7. Operating Characteristics (V_S = 3.0 Vdc, T_A = 25 °C unless otherwise noted, P1 > P2)

Characteristic		Symbol	Min	Тур	Max	Unit
Operating Pressure Range	[1]	P _{OP}	0	_	10	kPa
Supply Voltage	[2]	Vs	_	3.0	6.0	V _{DC}
Supply Current		lo	_	6.0		mAdc
Full Scale Span	[3]	V _{FSS}	20	35	50	mV
Offset	[4]	V _{off}	0	20	35	mV
Sensitivity		ΔV/ΔΡ	—	3.5	—	mV/kPa
Linearity	[5]		-1.0	_	1.0	%V _{FSS}
Pressure Hysteresis (0 kPa to 10 kPa)	[5]		_	±0.1		%V _{FSS}
Temperature Hysteresis (-40 °C to +125 °C)	[5]		_	±0.5		%V _{FSS}
Temperature Coefficient of Full Scale Span	[5]	TCV _{FSS}	-0.22	_	-0.16	%V _{FSS} /°C
Temperature Coefficient of Offset	[5]	TCV _{off}	—	±15	—	µV/°C
Temperature Coefficient of Resistance	[5]	TCR	0.21	_	0.27	%Z _{in} /°C
Input Impedance		Z _{in}	400	_	550	Ω
Output Impedance		Z _{out}	750	_	1250	Ω
Response Time (10% to 90%)	[6]	t _R	_	1.0	_	ms
Warm-Up Time	[7]	_	—	20	_	ms
Offset Stability	[8]	_	—	±0.5	—	%V _{FSS}

[1] 1.0 kPa equals 0.145 PSI.

[2] Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.

[3] Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.

[4] Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.

[5] Accuracy (error budget) consists of the following:

• Linearity: Output deviation from a straight line relationship with pressure, using the end point method, over the specified pressure range.

• Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.

• Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25 °C.

• TcSpan: Output deviation at full rated pressure over the temperature range of 0 °C to 85 °C, relative to 25 °C

• TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 °C to 85 °C, relative to 25 °C

• TCR: Zin deviation with minimum rated pressure applied, over the temperature range of −40 °C to +125 °C, relative to 25 °C

[6] Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.

[7] Warm-Up Time is defined as the time required for the product to meet the specified output voltage after the pressure has been stabilized.
 [8] Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure Temperature Cycling with Bias test.

MPX10

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved

Product data sheet

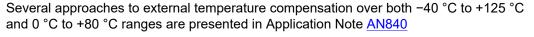
Rev. 15 — 22 April 2021

7 / 20

10 kPa Uncompensated Pressure Sensors

9 Characteristics

9.1 Voltage output versus applied differential pressure


The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly, output voltage increases as increasing vacuum is applied to the vacuum side (P2) relative to the pressure side (P1).

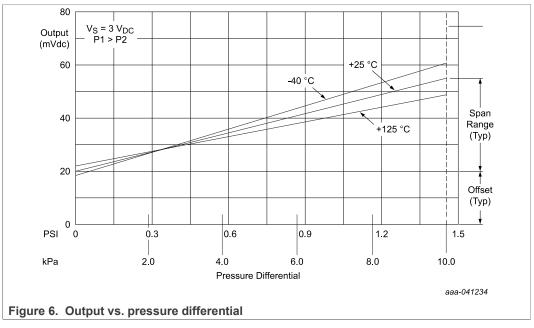

9.2 Temperature compensation

Figure 6 shows the typical output characteristics of the MPX10 series over temperature.

Because this strain gauge is an integral part of the silicon diaphragm, there are no temperature effects due to differences in the thermal expansion of the strain gauge and the diaphragm, as are often encountered in bonded strain gauge pressure sensors. However, the properties of the strain gauge itself are temperature dependent, requiring that the device be temperature compensated if it is to be used over an extensive temperature range.

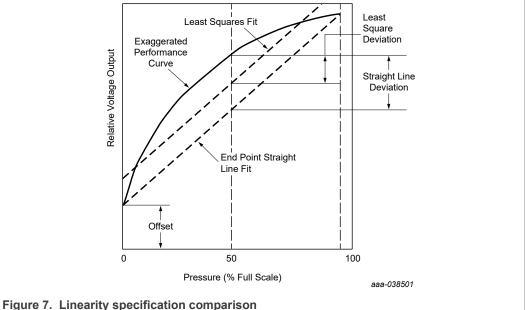
Temperature compensation and offset calibration can be achieved rather simply with additional resistive components, or by designing your system using the MPX2010 series sensor.

9.3 Linearity

Linearity refers to how well a transducer's output follows the equation $V_{out} = V_{off} + Sensitivity x P$ over the operating pressure range (Figure 7). There are two basic methods for calculating nonlinearity:

• End point straight line fit

MPX10	All information provided in this document is subject to legal disclaimers.	© NXP B.V. 2021. All rights reserved.
Product data sheet	Rev. 15 — 22 April 2021	
		8 / 20


10 kPa Uncompensated Pressure Sensors

· Least squares best line fit

While a least squares fit gives the "best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user.

NXP's specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

9.4 Pressure (P1) / Vacuum (P2) side identification

NXP designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing silicone gel that isolates the die from the environment. The NXP MPX pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using Table 8.

Table 8.	Pressure	(P1)) side	delineation table	
----------	----------	------	--------	-------------------	--

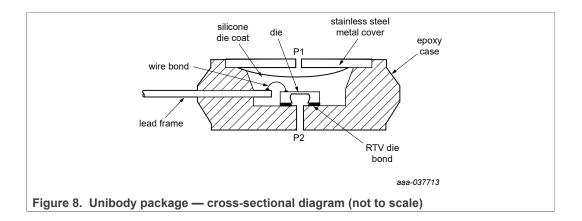
Part Number	Case Type	Pressure (P1) Side Identifier
MPX10D	344	Stainless Steel Cap
MPX10DP	344C	Side with Part Marking
MPX10GP	344B	Side with Port Attached
MPXV10GC6U	482A	Side with Port Attached

9.5 Media compatibility

Figure 8 illustrates the differential or gauge configuration in a typical chip carrier. A silicone gel isolates the die surface and wire bonds from the environment while allowing the pressure signal to be transmitted to the silicon diaphragm.

MPX10 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved **Product data sheet** Rev. 15 - 22 April 2021

9/20


MODERN HERO TECHNOLOGIES (SHENZHEN) CO., LTD 0086-13392863941

sales@octsources.com

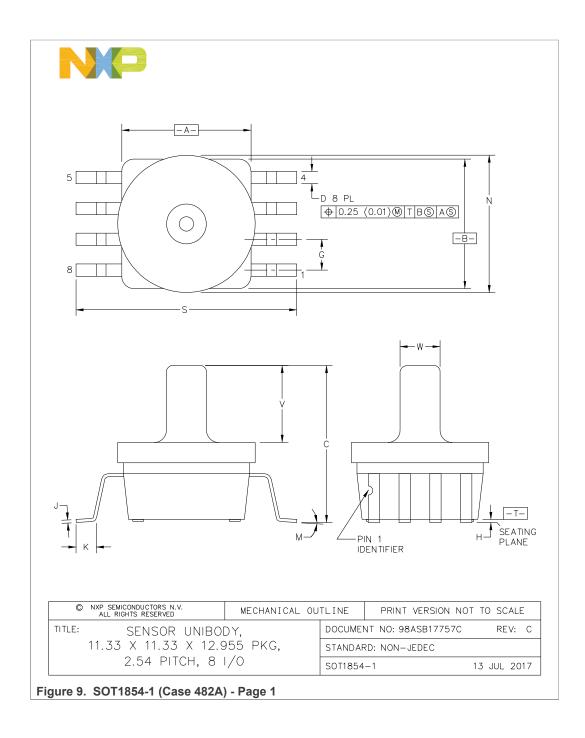
10 kPa Uncompensated Pressure Sensors

The MPX10 series pressure sensor operating characteristics, internal reliability and qualification tests are based on the use of dry clean air as the pressure medium. Media other than dry clean air may have adverse effects on sensor performance and long term reliability. Contact the factory for information regarding media compatibility in your application.

For more information, refer to application note AN3728.

MPX10 Product data sheet

© NXP B.V. 2021. All rights reserved.


10 / 20

10 kPa Uncompensated Pressure Sensors

10 Package Outlines

Package dimensions are provided in package drawings.

10.1 Small outline packages

MPX10 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 15 - 22 April 2021

© NXP B.V. 2021. All rights reserved.

11 / 20

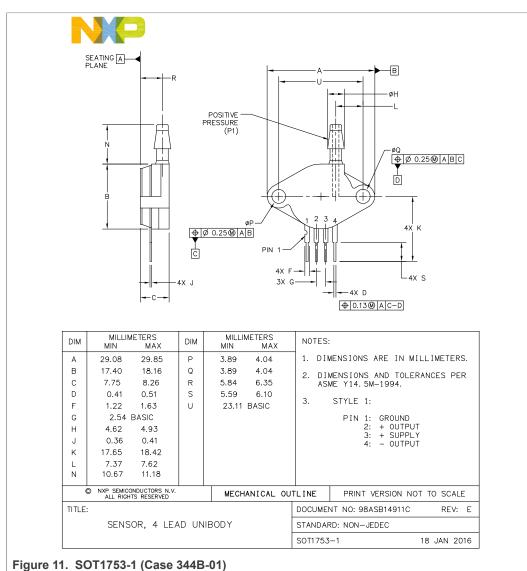
10 kPa Uncompensated Pressure Sensors

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14,5M-1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION 'A' AND 'B' DO NOT INCLUDE MOLD PROTUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006).
- 5. ALL VERTICAL SURFACES 5' TYPICAL DRAFT.

	INCHES		MILLIMETERS					
DIM	MIN	MAX	Min	MAX				
А	0.415	0.425	10.54	10.79				
В	0.415	0.425	10.54	10.79				
С	0.500	0.520	12.70	13.21				
D	0. 038	0.042	0.96	1.07				
G	0.100	BSC	2.5	4 BSC				
Н	0. 002	0.010	0.05	0.25				
J	0.009	0.011	0.23	0.28				
К	0.061	0.071	1.55	1.80				
М	0°	7°	0°	7°				
Ν	0.444	0.448	11.28	11.38				
S	0. 709	0.725	18.01	18.41				
۷	0.245	0.255	6.22	6.48				
W	0.115	0.125	2.92	3.17				
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED				MECHANICAL OU		TLINE	PRINT VERSION N	OT TO SCALE
TITLE: SENSOR UNIBODY, 11.33 X 11.33 X 12.955 PKG, 2.54 PITCH, 8 I/O						DOCUMEN	NT NO: 98ASB17757C	REV: C
						STANDARD: NON-JEDEC		
						SOT1854-1 1		13 JUL 2017
jure 1	0. SOT18	54-1 (Cas	e 482A)	- Page 2				

MPX10 Product data sheet


All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Rev. 15 — 22 April 2021

12 / 20

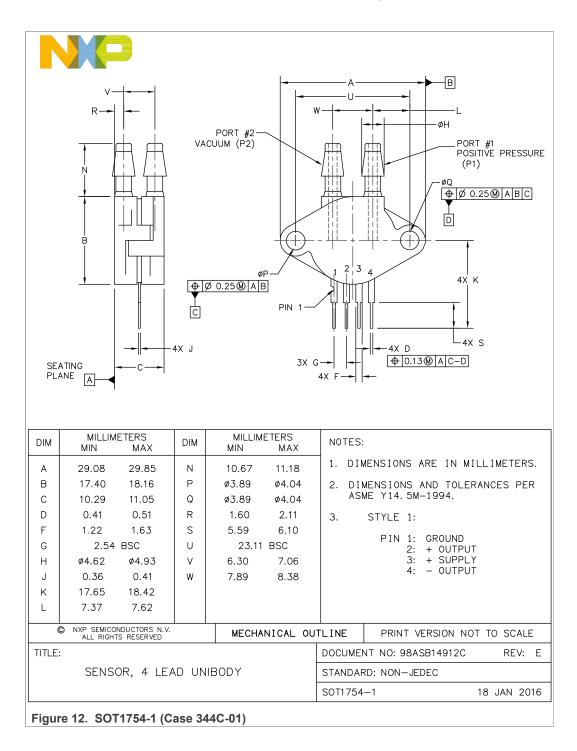
10 kPa Uncompensated Pressure Sensors

10.2 Unibody packages

MPX10

© NXP B.V. 2021. All rights reserved.

Product data sheet

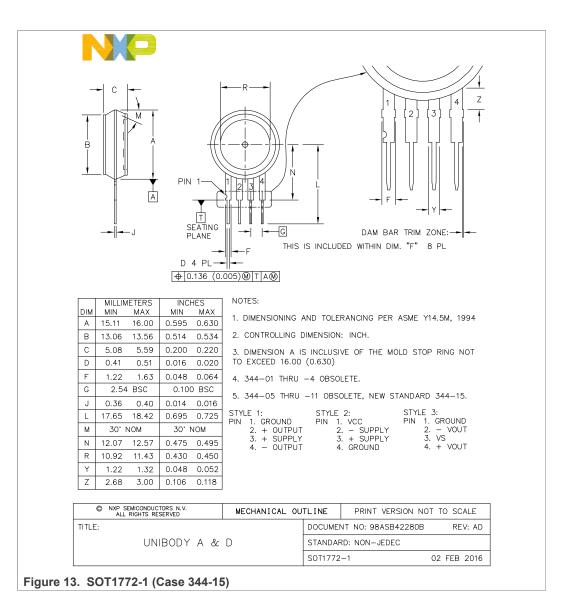

Rev. 15 — 22 April 2021

13 / 20

MODERN HERO TECHNOLOGIES (SHENZHEN) CO. , LTD 0086-13392863941 sales@octs

sales@octsources.com

10 kPa Uncompensated Pressure Sensors


MPX10 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 15 - 22 April 2021

© NXP B.V. 2021. All rights reserved.

MODERN HERO TECHNOLOGIES(SHENZHEN)CO., LTD 0086-13392863941 sales@octsources.com

14 / 20

10 kPa Uncompensated Pressure Sensors

MPX10

© NXP B.V. 2021. All rights reserved.

Product data sheet

Rev. 15 — 22 April 2021

15 / 20